$5 p \frac{106}{489}$

ПО ПРОБЛЕМАМ ВЗАИМОСВЯЗИ
ПРОЕКТИРОВАНИЯ
И ВОЗВЕДЕНИЯ ОБОЛОЧЕК ДЛЯ ПРОИЗВОДСТВЕННЫХ
И ОБЩЕСТВЕННЫХ ЗДАНИЙ С БОЛЬШИМИ ПРОЛЕТАМИ

СССР ЛЕНИНГРАД $6-9$ СЕНТЯБРЯ 1966 г.

Tема V
ПРИМЕРЫ ОСУЩЕСТВЛЕННЫХ СООРУЖЕНИИ

Евгений Фызи

СООРУЖЕНИЕ КРЫТОГО ТЕННИСНОГО КОРТА В БУДАПЕШТЕ

СООРУЖЕНИЕ КРЫТОГО ТЕННИСНОГО КОРТА В БУДАПЕШТЕ

Работы по проектированию крытого теннисного корта с двумя площадка'ми, который должен быть построен в Будапеште, были выполнены проектным предприятием городских сооружений в Будапеште.

Конструирование и статические расчеты были проведены под руководством д-ра Стефана Минихарда ответственным опециалистом по проектированию. д-ром Евгением Фызи. Требовалось запроектировать здание, которое не только удовлетворяло бы функциональным и өстетическим требованиям, но было бы вместе с тем недорогим, так как спортивное общество располагает єтрого ограниченными финансовыми возможностями.

Разработка проекта

Объем здания требовалось решить так, чтобы он лучше всего отвечал требованиям данной игры.

Это привело к решению о 'применении покрытия в виде эллиптического параболоида. Обе площадки решено было перекрыть одинаковы'ми оболочка'ми, опирающимися по коротким сторонам на массивные стены, а по длинным сторонам 'на арки-диафрагмы (всего три арки). Проведенные расчеты и сопоставление стоимостей показали, что два стальных каркаса витражей продольных стен, воспринимающих в основном ветровую нагрузку, могут быть одновременно использованы вместо дорогостоящих наружных арочных диафрагм с затяжками (рис. 1-3). Кроме того, было достигнуто сокращение расходов в результате сопоставления нескольких вариантов фундамента. Былฺо решено заменить ленточные фундаменты мелкого заложения значительно более экономичными фундаментными балками на отдельных опорах. Это решение было подкреплено еще тем, что для трибун возводилась парапетная стена с металлической обшивкой, когорая одновременно могла служить фундаментной балкой (см. рис. 2 и 3).

Отдельные фунда'менты 'были запроектированы по английской системе «high - way» с основанием из буровых свай диаметром 60 см, которые сооружаются в Венгрии впервые. Согласно расчетам несущая способность такой сваи составляет 20 т, что проверяется пробной нагрузкой.

Первоначально предполагалось, что средняя диафрагма бу-

дет выполнена в виде железобетонной двухшарнирной арки с затяжкой ниже уровня пола. В окончательном варианте шарниры были подняты, т. к. оболочки передают тангенциальные усилия, которые загружают не всю арку, а только ее часть (см. рис. 3). Вследствие өтото в ней возникают относительно большие моменты, причем нормальные силы в за'мке являются растягивающими, в пятах - сжимающими. Минимальное сечение бетона и арматуры определялось оптимальным положением шарниров. Расход материалов, а также денежных средств был для 'местных условий сравнительно невелик. Удельный расход 'материала на ідание объемом $15500 \mathrm{~m}^{3}$ составил 0,025 м 3 бетона и $0,024 \mathrm{~T}$ арматуры, включая фундаментные балки и стены.

Оболочки являются параболической кольцевой поверхностью с горизонтально расположенной осью. За координатную поверхность была принята поверхность касательного щилиндра. Были приняты следующие координаты: криволинейная координата x, направление образующей y и напра'вление по нормали z (см. рис. 4).

В этой координатной системе уравнение поверхности запишется так:

$$
z=\frac{c_{1}}{2} x^{2}+\frac{c_{2}}{2} y^{2}
$$

Сумма проекций на оси x, y, z равна нулю, что дает следующее уравнение:

$$
\begin{gathered}
\frac{\partial Q}{\partial x}+\frac{\partial T}{\partial y}-c_{1} c_{2} y T+x=0 \\
\frac{\partial S}{\partial y}+\frac{\partial T}{\partial x}+y=0 ; \quad c_{1} Q+c_{2} S=-z
\end{gathered}
$$

Здесь x, y, z обозначают компоненты функции поверхностной нагрузки; Q, S, T-компоненты приведенных усилий. В первом приближении не учитывается член $T c_{1} c_{2}$ в первом уравнении равновесия. В этом случае получается решение, аналогичное решению эллиптического параболоида. Во втором приближении определяется значение отброшеннопо члена на основе вычисленной в первом приближении величины T, и расчет повторяется.

Вообще, поправочный член после второго, самое большее, после третьего последовательного приближения будет очень малым. Итак, в рассматриваемом случае :намечается следующий ход решения.

Прежде всего решаются дифференциальные уравнения:

$$
\begin{aligned}
& \frac{\partial Q_{0}}{\partial x}+\frac{\partial T_{0}}{\partial y}+x=0 \\
& \frac{\partial S_{0}}{\partial y}+\frac{\partial T_{0}}{\partial x}+y=0
\end{aligned}
$$

$$
c_{1} Q_{0}+c_{2} S_{0}=-z
$$

На основе полученных результатов решаются следующие уравнения:

$$
\begin{gathered}
\frac{\partial Q_{1}}{\partial x}+\frac{\partial T_{1}}{\partial y}-c_{1} c_{2} y T_{0}=0 \\
\frac{\partial S_{1}}{\partial x}+\frac{\partial T_{1}}{\partial y}=0 \\
c_{1} Q_{1}+c_{2} S_{1}=0
\end{gathered}
$$

Так как грузовым членом с T_{1} можно пренебречь, получаем следующее решение:

$$
\begin{gathered}
Q=Q_{0}+Q_{1} \\
S=S_{0}+S_{1} \\
T=T_{0}+T_{1}
\end{gathered}
$$

При этом принимаются в расчет собственный вес, снеговая нагрузка, ветровое давление в первых трех учитываемых членах соответствующего ряда Тейлора.

Гидроизоляция оболочки ісостоит из полимеризованной эмульсии битулакса с добавкой алюминия и бронзы. В качестве теплоизоляции применен гидравлический набрызгиваемый асбест. Что касается освещения, то продольные стены под арками представляют собой витражи из двойного профилированного стекла, обеспечивающие наиболее эффективное рассеивание света.

Искусственное освещение обеспечивается расположенными вдоль арок светильниками с порами. Там же устанавливаются инфракрасные отапливаемые газом пріборы; продукты сгорания удаляются через вытяжные трубы. Естественная вентиляция помещения происходит через нижние жалюзи в витражах и вентиляционные фонари в кровле. Для восприятия вертикальной нагрузки и ветрового давления служат стальные сварные конструкции, установленные вдоль витражей с внутренней их стороны, так что их не видно с фасада. Во избежание повышенной влажности воздуха поверхность площадок вместо увлажненного шлака покрывают искусственной смолой. Вдоль двух сторон зала располагаются телескопические выдвижные трибуны, которые убираются в железобетонный цоколь витражей.

Все работы выполняются специализированными предприятиями и обеспечивают гармоническое соответствие конструктивных механических и эстетических требований. Так, например, в этом здании нигде не видно наружных проводок. Для изготовления оболочки выбрана современная технология, которая учитывает, что радиальные сечения кольцевой поверхности конгруэнтны. При этом возможно организовать бетонирование путем непрерывного перемещения расположенных один за другим элементов опалубки шириной 2 м.

Благодаря временным затяжкам забетонированные участки работают как своды в направлении короткой єстороны.

После окончания строительных работ временные затяжки демонтируются. Таким образом, готовое сооружение оболочки работает как пространсгвенная система. При бетонировании был предусмотрен строительный подъем.

Puc. 1. План здания

Puc. 2. Разрез

Puc. 3. Фасад

puc. 4. Аксонометрическое изображение си-
стемы координат и поверхности оболочки
г. Подольск, ул. Кирова, д. 25

